A video game style electromagnetic gun (from 1934)

So you think your video game has a railgun (or maybe a coilgun) from Doom, Quake, Mass Effect or what have you, that will defeat any armor and is incomprehensibly cool. Alas, it’s made of pixels.

Well, Virgil Rigsby from San Augustine Texas patented in 1934 what he called an “electric gun” – an apt description.

Via modernmechanix.com

Via modernmechanix.com

Mr. Rigsby next to a mockup of his "electric machine gun" (Via davidszondy.com). How badass looking is that?

Mr. Rigsby next to a mockup of his “electric gun” (via davidszondy.com).
How badass looking is that? The pith helmet he’s wearing makes it even better.

Mounted on the deck of a ship or on the back of a truck (if it had a nuclear reactor supplying power), this would have been formidable weapon.

Mounted on the deck of a ship or on the back of a truck (if it had a nuclear reactor supplying power), this would have been formidable weapon.

Bolts. I love bolts.

The premise behind this is that it’s essentially a coilgun with relatively fast reload time (even in those days, EM guns took a while to “recharge”) and rather than relying on complex triggering circuitry which would have been impractical in a time before the silicon chip, he went with a triggering wheel.

Coilguns frequently are confused with Railguns, however the principles of operation are very different. Although they both work on electromagnetism and require a vast amount of power, in a railgun, there are no coils per-se. The projectile/armature and the two rails on either side create one giant electromagnet. Whereas in a coilgun, each coil is an electromagnet momentarily energized sequentially as the projectile gets near each one.

This requires coilguns to be more complex, with multiple stages of acceleration that require intricate triggering mechanisms and careful timing. Therefore, coilguns are more awesome.

This schematic shows how each coil is arranged to be energized in sequence as the arm in the triggering wheel rotates. Note how each coil becomes smaller in width.

This schematic shows how each coil is arranged to be energized in sequence as the arm in the triggering wheel rotates. Note how each coil becomes smaller in width.

As the projectile gets near the next coil in sequence, it is energized. As the projectile enters the coil, it is de-energized and the next coil is triggered, pulling it through the barrel in this fashion until it exits the gun at tremendous velocity. Because the time the projectile spends in each coil is shorter and shorter as it accelerates, Mr. Rigsby wisely chose to reduce the width of each subsequent coil in the barrel.

Detail of the triggering wheel shows how the surface area of each contact plate in sequence becomes smaller as the amount of time the projectile spends in each coil becomes shorter. This is low tech timing in the days before advanced triggering circuitry.

Detail of the triggering wheel shows how the surface area of each contact plate in sequence becomes smaller as the amount of time the projectile spends in each coil becomes shorter. This is low-tech timing in the days before advanced triggering circuitry.

These days, coilguns employ a bank of High Voltage capacitors powering each coil. Modern circuits may also employ a second coil next to the acceleration coil, essentially to function as a simple metal-detector, to trigger the next acceleration coil in the sequence. Some advanced designs may use hall-effect sensors or an optical trigger that fires when the projectile breaks a laser/IR beam between the source and sensor. The optical triggers require slots to be cut into the barrel or often use barrels made of transparent borosilicate glass which is resistant to high temperatures and stress, while still being reasonably permeable to an electromagnetic field.

The biggest downside to this design (besides looking too awesome in front of the enemy, thereby ending the fight before it begins) was that it would have required a monumental amount of electricity to fire each round. These projectiles aren’t paper weights so they required a corresponding level of power at very high amps for each coil multiplied by each time fired. Due to inefficiencies of conversion from electromagnetic energy to kinetic energy, there will also be a lot of heat produced in the coils and triggering mechanisms.

That said… I’m totally building one of these when I have time.

Advertisement

Movie of the Week: The Brain that Wouldn’t Die

What happens when a doctor keeps his girlfriend’s accientally severed head alive in desperation and tries to find her replacement bodies? Calamity!

Alive... Without a body... Fed by an unspeakable horror from hell!

The story follows Dr. Bill Cortner (Evers) who has few qualms about radical procedures that at first border on outright human experimentation. We see later how easy it is to cross that line. The movie starts off in the operating room where Dr. Cortner’s dad is the lead surgeon who had just failed to save a patient. The good doctor then takes over from his dad and tries something truly radical “because he’s dead; I can’t do any harm”. It all starts there.

Dr. Cortner’s girlfriend is Jan Compton (Leith), the nurse (naturally) who was present during the “succesful” operation.

The story truly takes a turn for the bizarre when Jan loses her head in horrific car crash and the doctor manages to still keep her head alive, and talking, using a special compound (“Adrenal Serum”) he had invented and other scientific apparatuses. Of course, this still leaves her without a body and the doctor goes body hunting by tracking down attractive women to behead, much to the horror of the Jan-head.

Let me die! Let me die!

Though the film has little gore for the genre, even with a mutated abomination attack, and we’re spared some of the bloody horror. Having said that, there are some interesting dialog in the lab including several memorable lines from Jan’s head juxtaposed with rather amusing pickup lines from the body-shopping doctor.

Released in 1962 (fimed in ’59), the film stars Jason Evers (then going by the name of Herb Evers), Virginia Leith and Leslie Daniel.

Be sure to sidestep the oozing puddles of sexsim even considering the era it was released (like the doctor driving Jan’s car with Jan in the passenger seat) and take it for what it is. Remember this was filmed in the late 50’s.

Watch the trailer

Watch the full movie

This is one of very few older movies that I’ve been able to watch online instead of VHS or DVD due it being in the public domain. Yes, I still keep a VCR, just to watch old movies.

You can also download the whole film at the Web Archive.

Site of the Week: Concept ships

From the retro-futuristic to the truly beyond-this-world artistry exploring design concepts for spaceships and other craft. This is an amazing collection of beautiful creations by extremely talented artists.

An online animated spaceship and experimental aircraft art magazine

An online animated spaceship and experimental aircraft art magazine

The site is rather packed with a lot of multimedia so it may take a while to load even on broadband. But it’s well worth the wait.

In addition to science fiction works by authors such as Arthur C. Clarke, it’s visionary imagery such as these that inspired my thirst for space.